# Konstruktionsmethodik

KRBK 3L



| 1. Allgemeine Grundsätze | 11  |
|--------------------------|-----|
| 2. Planen                | 19  |
| 3. Konzipieren           | 57  |
| 4. Entwerfen             | 97  |
| 5. Ausarbeiten           | 123 |
| 6 Praktische Anwendung   | 139 |



Herausgeberin: Edition Swissmem 4. Auflage 2016

Bezugsquelle: Swissmem Berufsbildung Brühlbergstrasse 4 8400 Winterthur

Telefon Vertrieb 052 260 55 55 Fax Vertrieb 052 260 55 59

www.swissmem-berufsbildung.ch vertrieb.berufsbildung@swissmem.ch

Copyright Text, Zeichnung und Ausstattung: © by Swissmem, Zürich

Alle Rechte vorbehalten. Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Verwertung in andern als den gesetzlich zugelassenen Fällen bedarf der vorherigen schriftlichen Einwilligung des Herausgebers.



#### **Vorwort**

Der Lehrgang «Konstruktionsmethodik» vermittelt die Grundlagen, die Konstrukteurinnen und Konstrukteure für ihre berufliche Tätigkeit benötigen.

Ergänzt wird der Lehrgang mit der Ausgabe für den Berufsbildner. Darin sind methodische und didaktische Hinweise sowie die Lösungen der Übungen enthalten. Zusätzlich wird online eine Auswahl an weiteren Übungen angeboten, welche der Berufsbildner je nach Bedarf einsetzen kann.

Auf Basis der «Fünfjahresüberprüfung» der Berufsreform 2009 und des aktuellen Normenauszugs 2014, wurde diese Auflage neu überarbeitet. Auch wurden zusätzlich Elemente der geometrischen Tolerierung berücksichtigt. Betroffen davon ist nicht nur der Theorieteil, sondern auch der Übungsteil, in dem praktische Übungen für den Lernenden enthalten sind.

Gleichzeitig wurden bei den entsprechenden Themen Querverweise ergänzt, die auf die dritte Ebene des Kompetenzen-Ressourcen-Katalogs referenzieren. Das Layout wurde auch überarbeitet.

Über QR-Codes können neu Web-Seiten oder Applikationen gestartet werden.

Die Vermittlung der verschiedenen Themen ist in drei Schritte gegliedert:

- 1. Aktivierung
- 2. Theorie/Übungen
- 3. Repetition

Der Lehrgang entspricht dem Stand der Technik und den aktuellen Normen.

März 2016 Swissmem Berufsbildung

An der Ausarbeitung dieses Lehrganges waren beteiligt:

#### **Projektleitung**

Joachim Pérez, Projektleiter, Swissmem Berufsbildung, Winterthur

Fischer Markus, Ausbildungszentrum der Stiftung azb, Strengelbach Gnos Robert, Rieter AG, Winterthur
Huwiler Martin, BERUF ZUG, Zug
Illic Milovan, BOBST, Lausanne
Jungo Roger, FRIMECA Berufsbildung, Fribourg
Kellenberger Sven, Bühler AG, Uzwil
Müller Enrico, Ferag AG, Hinwil
Spahr Hans-Ulrich, Ypsomed AG, Burgdorf
Tschudi Willi, Swissmem Berufsbildung, Winterthur
Ucukalo Vladimir, Wibilea AG, Neuhausen
van Embden Carsten, azw Ausbildungszentrum Winterthur, Winterthur
Zingg Markus, RAU Regionales Ausbildungszentrum Au, Au
Baur Daniel, Swissmem Berufsbildung, Winterthur

Wir danken dem ganzen Team für die ausgezeichnete fachliche Unterstützung und für die gute Zusammenarbeit.

Für die Unterstützung mit Bildern und Inhalten danken wir:

Gressel AG, Aadorf Ferag AG, Hinwil Bühler AG, Uzwil Maschinenfabrik Rieter AG, Winterthur Steinbeis-Beratungszentrum Konstruktion, Werkstoffe und Normung, D-Schorndorf



# Inhaltsverzeichnis

| 1. Allgemeine Grundsätze |            |                                                                |           |
|--------------------------|------------|----------------------------------------------------------------|-----------|
|                          | 1.1        | Einführung in das Konstruieren                                 | 11        |
|                          | 1.1.0      | Grundsatzfragen                                                | 11        |
|                          |            | Was ist Konstruieren?                                          | 12        |
|                          |            | Warum Konstruktionsmethodik?                                   | 12        |
|                          |            | Konstruktionsprozess                                           | 13        |
|                          |            | Konstruktionsphasen                                            | 14        |
|                          |            | Konstruktionsarten                                             | 15        |
|                          |            | Übungsaufgaben                                                 | 16        |
|                          | 1.1./      | Repetitionsfragen                                              | 17        |
| 2. Planen                |            |                                                                |           |
| E. Flanch                | 2.1        | Aufgabenstellung interpretieren                                | 19        |
|                          |            | Aktivierungsfragen                                             | 19        |
|                          |            | Aufgabenstellung                                               | 20        |
|                          |            | Lastenheft                                                     | 20        |
|                          | 2.1.3      | Projektauftrag                                                 | 21        |
|                          | 2.1.4      | Vergleich Lastenheft/Projektauftrag                            | 21        |
|                          | 2.1.5      | Informationen beschaffen                                       | 22        |
|                          | 2.1.6      | Informationsquellen                                            | 24        |
|                          |            | Informationsumfang                                             | 25        |
|                          |            | Projekt «Spannvorrichtung»                                     | 26        |
|                          |            | Repetitionsfragen                                              | 30        |
|                          |            | Pflichtenheft/Anforderungsliste interpretieren und erstelle    |           |
|                          |            | Aktivierungsfragen                                             | 31        |
|                          |            | Pflichtenheft                                                  | 32        |
|                          |            | Anforderungsliste                                              | 32        |
|                          |            | Aufbau und Inhalt von Pflichtenheft bzw. Anforderungslis       |           |
|                          |            | Vergleich Pflichtenheft/Anforderungsliste                      | 33        |
|                          |            | Ordnen und Beurteilen der Informationen                        | 34        |
|                          |            | Freigabe des Pflichtenheftes                                   | 34        |
|                          |            | Strukturieren und Filtern von Informationen                    | 35        |
|                          |            | Forderungen                                                    | 37<br>37  |
|                          |            | Wünsche<br>Weitere Einflussgrössen                             | 38        |
|                          |            | . Beispiele von Einflussgrössen                                | 40        |
|                          |            | 2 Anforderungsliste Projekt «Spannvorrichtung»                 | 43        |
|                          |            | BÜbungsaufgabe                                                 | 44        |
|                          |            | l Repetitionsfragen                                            | 45        |
|                          | 2.3        | Termin-, Personal- und Kostenplanung erstellen                 | 47        |
|                          |            | Aktivierungsfragen                                             | 47        |
|                          |            | Vorgehen der Planung                                           | 48        |
|                          |            | Terminplan                                                     | 49        |
|                          |            | Personalplanung                                                | 52        |
|                          |            | Kostenplanung                                                  | 53        |
|                          |            | Übungsaufgaben                                                 | 54        |
|                          |            | Repetitionsfragen                                              | 55        |
| 2 // ::-                 |            |                                                                |           |
| 3. Konzipieren           | 2 1        | Funktionectwiktur orstellen                                    | E-7       |
|                          | <b>3.1</b> | Funktionsstruktur erstellen                                    | <b>57</b> |
|                          |            | Aktivierungsfragen<br>Funktionsstruktur                        | 57<br>58  |
|                          |            | Funktionsstruktur Funktionsstruktur Projekt «Spannvorrichtung» | 58<br>59  |
|                          |            | Übungsaufgaben                                                 | 60        |
|                          |            | Repetitionsfragen                                              | 61        |
|                          | O.1. I     |                                                                | 01        |



# Inhaltsverzeichnis

|                         | 3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br><b>3.3</b><br>3.3.0<br>3.3.1<br>3.3.2<br>3.3.3<br>3.3.4<br>3.3.5 | Methoden zur Lösungssuche unterscheiden Aktivierungsfragen Konzipieren Methoden zur Lösungssuche Übungsaufgaben Repetitionsfragen Methoden der Entscheidungsfindung unterscheiden Aktivierungsfragen Methoden zur Entscheidungsfindung Zusammenfassung der Methoden zur Entscheidungsfindung Vorteil-Nachteil-Vergleich Projekt «Spannvorrichtung» Auswahlliste Projekt «Spannvorrichtung» Übungsaufgaben Repetitionsfragen | 63<br>63<br>64<br>64<br>78<br>79<br>81<br>81<br>82<br>91<br>92<br>93<br>94<br>95 |
|-------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 4. Entwerfen            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
|                         | 4.1.0<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>4.1.6                                          | Entwurf erstellen Aktivierungsfragen Entwerfen Gestaltungsgrundregeln Gestaltungsrichtlinien Bewertungsmatrix eines Entwurfs Feinentwurf Projekt «Spannvorrichtung» Übungsaufgaben Repetitionsfragen                                                                                                                                                                                                                        | 97<br>97<br>98<br>99<br>100<br>118<br>119<br>121                                 |
| 5. Ausarbeiten          | 5.1.0<br>5.1.1<br>5.1.2<br>5.1.3<br>5.1.4<br>5.1.5<br>5.1.6<br>5.1.7<br>5.1.8<br>5.1.9               | Technische Unterlagen erstellen Aktivierungsfragen Ausarbeiten technischer Unterlagen Arten technischer Unterlagen Stücklisten Stücklistenarten ERP-System Weitere technische Unterlagen Erfahrungsrückfluss Zeichnungsprüfung Übungsaufgaben Repetitionsfragen                                                                                                                                                             | 123<br>123<br>124<br>125<br>128<br>130<br>132<br>134<br>134<br>135<br>136        |
| 6. Praktische Anwendung | <b>6.1</b> 6.1.1                                                                                     | <b>Lehrgang umsetzen</b> Projekt «Bohrvorrichtung»                                                                                                                                                                                                                                                                                                                                                                          | <b>139</b><br>139                                                                |



#### Zeichenerklärungen



Diese Variante ist zweckmässig. Im Sinne der Optimierung des Produktes suchen wir die stärkste Lösung.



Brauchbare Lösung. Sicher sind noch bessere Varianten zu finden!



Diese Lösung ist ungeeignet. Überlegen Sie, aus welchem Grund diese Lösung nicht befriedigt und suchen Sie eine bessere Variante.



Lösen Sie diese Aufgabe mit dem geeignetsten Hilfsmittel (schreiben, skizzieren, mit Hilfe des CAD usw.)



Lernziele



Wichtige Hinweise



Informationen



QR-Codes: Verlinkung zu Webseiten





Hinweis auf KoRe-Ebene



Notieren Sie hier die zutreffenden Informationen, wie nationale oder internationale Normen, Betriebsnormen, Titel von Fachbüchern, Betriebsanleitungen usw.

#### **Inhaltlicher Aufbau**

Der Lehrgang Konstruktionsmethodik ist in Module, sogenannte Ausbildungseinheiten, unterteilt. Dabei ist zu erwähnen, dass der **Normen-Auszug** Bestandteil des Lehrganges ist. Für die Beantwortung der Aktivierungsbzw. Repetitionsfragen können Fachbücher zur Hilfe genommen werden.

Diese Ausbildungseinheiten sind inhaltlich folgendermassen aufgebaut:

#### **Aktivierung**

Jede Ausbildungseinheit beginnt mit Grundsatzfragen, welche den momentanen Wissensstand erfasst.

#### Theorie

Der Theorieteil beinhaltet neben der Theorie auch Fragen und/oder Übungen, welche die Lernenden lösen müssen.

#### Übungen

Im Übungsteil sind verschiedene Aufgaben zu lösen, die im Theorieteil behandelt wurden.

#### Repetition

Als Abschluss jeder Ausbildungseinheit sind diverse Repetitionsfragen zu beantworten. Diese dienen zur Festigung des Lernstoffes und als Kontrolle für die Lernenden bzw. Berufsbildner.

In der Titelleiste ist jeweils angegeben, in welchem Teil der Ausbildungseinheit Sie sich befinden.



#### Ressourceneffizienz in der Produktentwicklung

Seit Jahren steigen die Preise für Material und Energie stark an. Ressourceneffizientes Handeln wird deshalb immer wichtiger. Bei den heute knapp verfügbaren Ressourcen sind Nachhaltigkeit und der überlegte Umgang mit den in der Produktion eingesetzten Materialien und der verwendeten Energie ein sehr wichtiges Thema.

Ressourceneffizienz ist das Verhältnis von erzeugten Produkten und eingesetzten Ressourcen.

Dies kann folgendermassen erreicht werden:

#### Minimums-Prinzip

Den gleichen Produktionslevel mit kleinerem Ressourceneinsatz erreichen.

#### Maximums- Prinzip

Mit gleichbleibendem Ressourceneinsatz den Produktionslevel erhöhen.

# Bei der Produktentwicklung sind nachfolgende Punkte zur Ressourceneffizienz zu berücksichtigen. Konstruktionsprozess:

- Ökobilanzen für Werkstoffe und ihre Anwendungen nachschlagen und für die Wahl von Werkstoffen und Fertigungsverfahren benutzen
- Ökologische Material- und Produktnormen und -richtlinien (z.B. Ökodesign Richtlinie der EU 2009/125/EG) und weitere Standards für ressourcen- und umweltschonende Werkstoffe und Fertigungsverfahren anwenden
- Werkstoffe bei der Konstruktion ressourcen- und umweltschonend einsetzen
- Geräte, Werkstoffe, Chemikalien und Gifte fach- und umweltgerecht anwenden, wiederverwerten und entsorgen
- Betriebsinterne Vorgaben zum Umweltmanagement (z.B. EMAS, ISO 14001 u.a.) anwenden

#### Systematische Lösungssuche:

- Kreativitätstechniken anwenden, um Lösungen für ressourcen- und umweltschonende Werkstoffe und Fertigungsverfahren zu entwickeln

#### Entscheidungstechniken:

- Varianten mit herkömmlichen material- und energieeffizienten Werkstoffen und Fertigungsverfahren vergleichen und bezüglich Funktionalität, Ökobilanz und Kosten bewerten



Es soll auf die Recyclingfähigkeit der zu verwendeten Materialien geachtet werden. Material- sowie Energieverschwendungen sind zu ermitteln und zu minimieren.



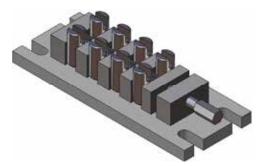
Überlegen Sie sich, wie Sie in Ihrem Einflussbereich weitere Massnahmen zur Steigerung der Ressourceneffizienz in Ihrem Unternehmen umsetzen können.



#### **Grundidee des Lehrganges**

#### Aufbau des Lehrganges

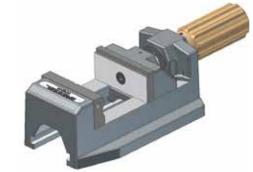
In der ersten Ausbildungseinheit werden die allgemeinen Grundsätze des Konstruierens bzw. der Konstruktionsmethodik erklärt.


Die zweite bis und mit fünfte Ausbildungseinheit beinhaltet die eigentliche Erarbeitung der einzelnen Teilschritte der Konstruktionsmethodik. Dabei bildet jeder Teilschritt der Konstruktionsmethodik eine Ausbildungseinheit.

Die sechste Ausbildungseinheit gibt Ihnen einen Überblick, hilfreiche Tipps und Hinweise über sicherheitsgerechtes Konstruieren.

In der letzten Ausbildungseinheit können Sie den Lehrgang anhand eines Projektes nochmals in die Praxis umsetzen.

#### Projekt «Spannvorrichtung»


Das **Projekt «Spannvorrichtung»** wird Sie während der Erarbeitung der Teilschritte der Konstruktionsmethodik begleiten. Dieses Projekt ist Bestandteil der Theorie, an welchem das jeweils Behandeltebeispielhaft dargestellt wird.



«SPANNVORRICHTUNG»

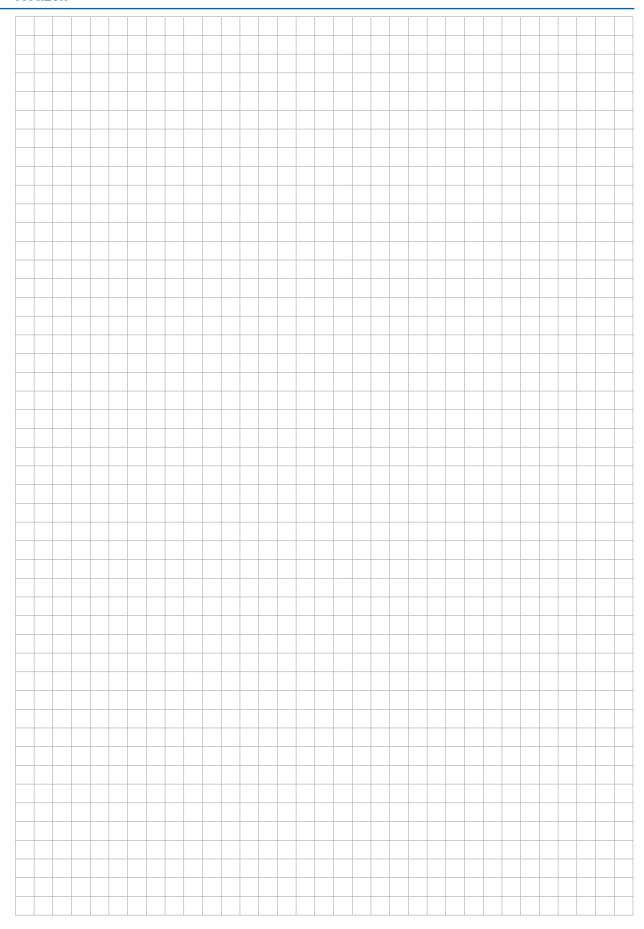
#### Pilotprojekt «GRESSEL»

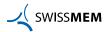
Im dazugehörigen Übungsteil einer Ausbildungseinheit können Sie den behandelten Theorieteil am Pilotprojekt **«GRESSEL»** jeweils selbstständig in die Praxis umsetzen.



«GRESSEL-BOHRMASCHINEN-SCHRAUBSTOCK ECOPOS 80-M»

Der Vorteil dieses Vorgehens besteht darin, dass Sie zuerst die Theorie anhand eines Beispieles erarbeiten und diese anschliessend im Übungsteil an einem konkreten Projekt anwenden können.


#### Empfehlungen


Am Ende dieses Lehrganges, im Kapitel **«Lehrgang umsetzen»**, können Sie an einem weiteren Projekt das Erlernte umsetzen. Ergänzend zum Lehrgang befinden sich **online** (Bestandteil der Lösungsausgabe) weitere interessante Projekte für Sie zur Auswahl. Zudem sind bei Swissmem auch andere Ausbildungsprojekte erhältlich, wie z.B. die **Projektsammlung KRPR 1K**. Selbstverständlich können Sie auch firmeneigene Projekte realisieren. Von grosser Bedeutung ist dabei, dass Sie bei allen Projekten mit der gleichen Systematik vorgehen. Bearbeiten Sie Projekte mit steigendem Schwierigkeitsgrad in der gleichen Art und Weise. So können Sie Ihre Sicherheit in der Konstruktionsmethodik trainieren.

Wir empfehlen Ihnen, **vor** der Bearbeitung des Lehrganges «Konstruktionsmethodik» sich mit den Lehrgängen **«Zeichnungstechnik»** und **«Gestaltungstechnik»** das grundlegende zeichnerische und gestalterische Rüstzeug anzueignen.



### Notizen





#### 1.1 Einführung in das Konstruieren



- Den Begriff «Konstruieren» kennenlernen
- Die Phasen des Konstruktionsprozesses kennenlernen





3.1.2 3.1.3



#### 1.1.0 Grundsatzfragen

1.1.0.1 Was verstehen Sie unter dem Begriff «Konstruieren»?

Der Begriff «Konstruieren» bedeutet so viel wie entwerfen, gestalten, entwickeln und bauen.

Konstruieren ist das vorwiegend schöpferische auf Wissen und Erfahrung gegründete und optimale

Lösungen anstrebende Vorausdenken technischer Erzeugnisse, Ermitteln ihres funktionellen und strukturellen Aufbaus und schaffen fertigungsreifer Unterlagen. Konstruieren ist eine schöpferische und geistige Tätigkeit.

- 1.1.0.2 Welche Tätigkeiten gehören Ihrer Meinung nach zum Konstruieren?
- Recherchieren, Informationen sammeln, analysieren, planen, mögliche Lösungen erarbeiten, Lösungen präsentieren, Lösungen diskutieren, entscheiden, definitive Lösung ausarbeiten, ...
- 1.1.0.3 Erklären Sie den Begriff «Konstruktionsmethodik»?

Anhand der Konstruktionsmethodik werden Konstruktionsaufgaben strukturiert und systematisch, d.h.

Schritt für Schritt gelöst. Die Konstruktionsmethodik beinhaltet Kreativitätstechniken um originelle Lösungen zu finden und umzusetzen. Sie stellt Methoden und Hilfsmittel zur Entwicklung von technisch optimalen Produkten bereit.

1.1.0.4 Wie ist in Ihrem Betrieb die Konstruktionsabteilung organisiert? Wie sieht das Organigramm aus?

| Abnangig von inrem Betrieb |  |
|----------------------------|--|
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |
|                            |  |

Die Lernenden sollen die Fragen selbständig beantworten. Korrigieren Sie die Lösungen nicht.



#### 1.1 Einführung in das Konstruieren

#### 1.1.1 Was ist Konstruieren?

Der Begriff «Konstruieren» stammt aus dem Lateinischen («con»=zusammen und «struere»=bauen) und bedeutet so viel wie entwerfen, gestalten, entwickeln und bauen. Ein Konstrukteur befasst sich demnach mit der Entwicklung und dem Bau von technischen Apparaten, Geräten, Maschinen und Anlagen.

Konstruieren ist das vorwiegend schöpferische auf Wissen und Erfahrung gegründete und optimale Lösungen anstrebende Vorausdenken technischer Erzeugnisse, Ermitteln ihres funktionellen und strukturellen Aufbaus und schaffen fertigungsreifer Unterlagen. Konstruieren ist eine schöpferische, geistige Tätigkeit! Eine gute Konstruktion zeichnet sich aus durch ein optimal funktionierendes Produkt, welches mit minimalem Aufwand gefertigt wird, den Kundenanforderungen entsprechende Qualität aufweist und unsere Umwelt möglichst wenig belastet.

Wie aber erreichen wir diese anspruchsvollen Ziele die eine Konstruktion erfordert?

#### 1.1.2 Warum Konstruktionsmethodik?

Die steigenden Produkteanforderungen, die Komplexität der Probleme und die Vielfalt der Wissensquellen erfordern von den Konstrukteuren/innen methodisches Arbeiten. Die Entscheidungen, die in der Konstruktionsphase getroffen werden, sind für den späteren Erfolg des Produkts verantwortlich. Dabei werden nicht nur Funktionalität und Gestalt, sondern zum grössten Teil auch die Kosten festgelegt. In der Produkteentwicklung liegt grosses Potenzial für Kostenreduzierungen und Qualitätsverbesserungen. Erfolgreiches Konstruieren verlangt einerseits eine systematische Arbeitsweise und andererseits kreative Einfälle und Ideen.

Das methodische Vorgehen mittels Teilschritten gewährleistet ein zielorientiertes Vorgehen. Man ist stehts über den Projektfortschritt informiert und kann dadurch laufend über das weitere Vorgehen entscheiden. Dies bedeutet auch, dass durch das methodische Vorgehen einem die Chance gegeben ist, Zielkorrekturen vornehmen zu können oder ein Projekt abzubrechen.



Ein Projekt nach methodischer Projektarbeit abzubrechen, weil es sich als technisch nicht realisierbar erweist, ist qualitativ hochstehende Projektarbeit.

Die Konstruktionsmethodik ist erlernbar und dies beabsichtigen wir mit diesem Lehrgang. Wir zeigen Ihnen anhand der Konstruktionsmethodik, wie Konstruktionsaufgaben strukturiert und systematisch, d.h. Schritt für Schritt gelöst werden können. Ebenso vermitteln wir Ihnen Kreativitätstechniken, damit Sie originelle Lösungen finden und umsetzen können. Wir zeigen Ihnen, wie ein solcher Konstruktionsprozess ablaufen kann, welche Fragen zu klären sind und wie eine Lösung gefunden wird.

#### Vorteile der Konstruktionsmethodik

Die Konstruktionsmethodik bringt dem zu Folge folgende Vorteile mit:

- ist bei jeder konstruktiver Tätigkeit anwendbar
- ermöglicht und erleichtert das Finden optimaler Lösungen
- Lösungen entstehen nicht zufallsbedingt
- vereinfacht die Diskutierbarkeit aller Lösungen
- erleichtert die Arbeit
- ist zeitsparend
- es können Fehlentscheidungen erkannt und vermieden werden
- erleichtert die Planung und Koordination von Teamarbeit
- dient als Anleitung und Richtschnur für den Projektleiter der Entwicklungteams

#### Ziele der Konstruktions-methodik

Das Ziel der Konstruktionsmethodik ist es Methoden und Hilfsmittel zur Entwicklung von technisch optimalen Produkten bereitzustellen. Sie ist als methodische Stütze gedacht. Deshalb ist es wichtig zu wissen, dass die konstruktive Erfahrung des Konstrukteurs nach wie vor eine wesentliche Rolle spielt.

Arbeiten Sie mit den Lernenden zusammen den Theorieblock dieser Ausbildungseinheit durch.

